[image: image1.png]i ! Industrial Control Links

ICL Application Note
No. 00011

Creating Functions and Function Blocks

Functions are highly useful tools in every developer’s arsenal. Functions are a block of code that is reused multiple times in a program. These blocks are separated from the main program and stored as semi-autonomous chunks. When the main program needs to use the function, it makes a call to it and passes in the information that the function needs to process. When the function finishes it returns a value (or values) back to the main program.

To help illustrate the concept of a function, think of the process of making bread. If you make a loaf of bread yourself, you need to measure the ingredients, mix them, kneed the dough, let it rise, kneed it again, divide it up, place it in pans, warm up the oven, bake the bread, check on it to make sure its done, and then finally take it out of the oven and let it cool.

If you use an automatic bread machine for this process, you put into it the ingredients, wait some time, and then come back to a baked loaf of bread.

In this case, the bread machine could be though of as a function. You put ingredients into the machine - the variables called by the function, press a button – call the function, and you get out a loaf of bread – the value returned by the function. If you make a loaf of bread every day, the bread machine/function really saves you’re a lot of time and effort.

There are several benefits to using functions. Possibly the greatest advantage is being able to reuse code. A well-written function can be saved and used again and again in future applications. A benefit of this is that you can end up with smaller programs, as a function only has to be included once in each application. So you can save code execution time and program memory.

To understand how you save memory, take a look at the diagram below. The left bar represents an application that does not use a function. The red blocks represent a block of code that is repeated several times in the application.

The second bar represents a program that uses a function. Note that the function is separated from the main program. When the program needs to use the function block of code, it makes what is called a function call and passes variables into the function for processing. When the function in done with its processing, it returns a value to the main program.

[image: image2.wmf]

Another ability of functions is to break a large program up into smaller logical units. Logical blocks of code that are repeated can be removed from the main program and put into functions. These individual units can then be tested and debugged individually before being pieced back into the main program.

ISaGRAF provides two flavors of functions; function and function blocks. Functions can take up to 254 inputs, but can have only one output. They are faster than function blocks and use up slightly less memory. Whenever possible you should use a function.

Function blocks allow for a combined total of 255 inputs and outputs. They are slightly slower than functions and take up a bit more space. However, they are your only option when you want to have more than one output from a function.

There are a couple considerations that must be taken into account when making a function of function block. The first is your choice of language. You can use Function Block Diagram, Ladder Diagram, Structured Text or Instruction List. Unless you are very familiar with languages that behave like Assembly, ICL does not recommend using Instruction List.

The other is that you should not use functions or function blocks within your own function that have their own internal data. Your program will compile but you will potentially have major problems later on down the line. The functions you should not use within your own function are:

Sr

rs
r_trig

f_trig
ctu

ctd
ctud

ton
tof

tp
sema

cmp
stackint

blink
sig_gen

derivate
hyster

lim_alrm
average

integral
Making a Function Within an Application

Sometimes you need a function for just one application, but you need it several times in that one application. This is how you would go about creating a function in that situation.

· Open up your project in ScadaBuilder.

· Select the Node that you would like to create the function for.
[image: image3.png]Nodes Files
72 Project APt Seaddbider

@I Nodetsin

· Click on the “Start the ISaGRAF Workbench” [image: image4.jpg]

 button. This will launch ISaGRAF.

· Click on the “Create New Program” [image: image5.jpg]

 button.

· You should now see the following screen:
[image: image6.png]NN

Comment:

Language: [FBD - Function Block Dizgram

L

Style: Begin: Han pragrem

oK Cancel |

· In the “Name” field, enter in the desired name for the function block.

· In the “Comment” field, enter in a description of the block you are about to make.

· In the “Language” field you can select from the following languages; FBD, Quick LD, ST or IL. For your reference, a simple example has been included for each language except IL. The example takes two registers, computes their logical OR, and stores them in a third register.

· FBD (Function Block Diagram)
[image: image7.png]KL =Tk

Fle Edt Tooks Options Help
ba X Ee(xEd(aq

w =Y [23+s QO bocleon AND =1 |

E

· Quick LD (Ladder Diagram)
[image: image8.png]Fle Edt Tooks Options Help
D@ YO He <B4 B Qas

I I

=3
o Scadaios

· ST (Structured Text)
[image: image9.png]=I5

Ele Edt lods Optins Hep
D@ X Be <B4 & &
Dot +

TE o7 DI

· In the “Style” field, select “Function”

· If you were using FBD, the window should now look something like this:
[image: image10.png][New Program

Name:
Comment:
Language:

Style:

[My sample function

FBD - Function Block Disgram

Ll

0K Cancel |

· Select “OK.” You should now see an empty design environment tailored to the language you chose. For FBD the window should look like the below.
[image: image11.png]K =T

Bl Edt Toos Options Help

Ba|XDR HS <DL Q)| &l
DINEER R Ik ak: D bocean AND = |

ki
==
==z

· Now click on the “Sub-Program Parameters” [image: image12.png]

 button.

· Functions can have multiple inputs but only one output, whereas function blocks can have multiple inputs and outputs. Function blocks will be addressed in the next section. These must be declared for your function to operate properly. This is done in the Parameters window.

· For all registers that go into the function the mode needs to be set to “Call.” These show up looking like the diagram below. Note the arrow pointing to the left.
[image: image13.png] Boolean
 Analog
C Real
 Timer

" Message

Delete.

Anange

· The register that is returned from the function back needs to be set to “Return.” These show up looking like the diagram below. Note the arrow pointing to the right.
[image: image14.png] Boolean
 Analog
C Real
 Timer

" Message

Delete.

Anange

· There can be a combined max of 255 input and output registers for each function or function block.

· Functions can have 0 – 254 inputs.

· Functions must have ONE output and that output’s name must match the function’s name.

· You will also need to choose the correct data type for each input/output

· It is recommended that you use names that are unique up to 5 characters. This is because names longer than 5 characters visually get truncated when the function is brought into a program. For example, “ToEncode” gets truncated to “ToEnc” as in the picture below.
[image: image15.png]blkist

ey
[ToEne

bl

· When you have set up all of your registers, press “OK” to commit your changes.

· Now you can write the logic of your function. All of the standard registers are available to you, however it is recommended that you stick to constant values declared within the function and the values brought in through the input registers. Doing this will ensure portability from one application to another. You can use registers that are part of the application but be aware that if you use the function in another application you will also need to add those registers to the application. Below is an example of a FBD function.
[image: image16.png]ol -l0/x|

Bl Edt Toos Options telp

D@ Xol He <Bdar

whB=ed9e[223= |0 boolean AND =] |
I
o ok
e o
Tokrcose a b o EIEE])
Al _>l_‘
=0

==z

The same function in ST would look like this:
[image: image17.png]| - 1saGRAF - NODELSTBLKTST- STprogram = IS =T

Bl Edt Toos Options telp

D@ XoR | He | =<Bd| &

SThIkEsE

NOT_MASKCXOR_MASK(Key. ToEncode>>:

I

Tt Scmaniars

· You can easily find local variables by changing the value in the “Scope” dropdown in the “Select Value” window that pops up when inserting a register into the function.
[image: image18.png]oK Cancel

· When you are finished with the logic of your function, save and verify it.

· To use your function in a program:

· Insert a block.

· Find your block in the block drop down menu.

· Connect up the needed registers. (Be sure their types match what your function is expecting to receive.)

· Your screen will look something like this:
[image: image19.png]EEIEER

File Edt Toos Options Help

D@ XoR He | <Bdlaai &l
DINEER R Ik ak: D bocean AND = |

[Select function block:

Block: [biist < [
Inputs: [Bo0 convert 1o boolean Cancel
Jooard rescl Boslean by network address —

Jooawr e Boolean by netwark adr

fcat concat messages

Jebsample C function Hock sample

fetsample

Jerer et charscter -

0 of]

ooz
==z

· At this point you should be ready to compile and test out your new function.

Making a Function Block Within an Application

Making a function block is much like making a regular function with two key differences.

· The first thing to note is that a function block can have multiple inputs and outputs, whereas functions have multiple inputs but only one output.
[image: image20.png]Parameters - ‘fbtest’

P oK

Keyl
Nunint Cancel
FBTest2
FBTestl

Mone: IR]| ™™ Cposkemn Insent

Mode & Analog

& call Beal Delete
" Return © Timer e

" Message

· The second thing to note is that you cannot use the function name as a return parameter in a function block. By comparison, you must use the function name for the return parameter in a function.

Storing and Retrieving your Functions/Function Blocks in the ISaGRAF Library

After making a function of function block, you may want to store it in a central location for use in future applications. The ISaGRAF Library is the ideal location for this. For this example, we will use the function or function block you created in the above steps.

· Open up your project in ScadaBuilder.

· Select the Node that contains the existing function or function block (function).

· Click on the “Start the ISaGRAF Workbench” [image: image21.png]

 button to launch ISaGRAF.

· Select the function you wish to add to the library.
[image: image22.png]15aGRAF - NODE1 - Programs.

Bl Make Project Took Debug Options Help

B HSET DEN (XX mb 22 [HH
Begin: BB Main_Main testing program

Functions: BB FTest Function Test

F Blocks: ED AN Function Block Test

· Then select Tools | Export to library.
[image: image23.png]15aGRAF - NODI rams

Fle Moke Projct | Jook Debug Options Help
B[] motfonibey (| m] 2 @5 | 5
e cHECCLDEM.,

Functions: © pdvanced options »

FHlocks E g) frest

· Now launch the ISaGRAF Library by going to your Start Menu, Programs, ISaGRAF, and then Libraries.

· When the library comes up it should look something like this:
[image: image24.png]15aGRAF - Libraries

Fle Edt Ioos Options telp

DEojaes|s |

ol =10/ x|

im_All
ICS Triplex 1SaGRAF
All types mixed

reserved for simulation

'sim_boo

creation date: 01 October 1994
author: ICS Triplex ISaGRAF

configuration: 8 boolean inputs
8 boolean outputs
8 analog outputs
8 message outputs

L Scadaarks

· In the top left portion of the screen you will find a drop down box. From this select “Functions” or “Function blocks,” depending on what you want to set up.
[image: image25.png]15aGRAF - Libraries

Fle Edt Toos Options telp

[Fucionvose -] D@0 [BE8S|& |

JO coniigurations.

· Your function should now be listed in the left pane of the screen.
[image: image26.png]15aGRAF - Libraries

Fle Edt Toos Optons Hep

ST I I

nam:
description: -
unpacki6 languag

· Double-click on the name of your function. This will bring up a code window containing what you have written.

· From “Options” select “Compiler options.”
[image: image27.png]B@| X (v eltes

whas o

—c—]

v Update iy,
v Enable power fow debugaing
Auta nput

|z Manuslkeyboard it

· In the “Targets:” window make sure that both “SIMULATE: Workbench Simulator” and “ISA86M: TIC code for Intel” are selected then press OK.
[image: image28.png]Targets:

> SIMULATE: Workbench Simulator

TSAGGM: TIC code for Molorola

> ISABGM: TIC code for Intel
CC86M: C source code (V3.04)

¥ Use embedded SFC engine
Optimizer:

I” Run two optimizer passes.
I~ Evaluate constant expressions

I~ Suppress unused labels.

I~ Optimize variable copying

I~ Optimize expressions

I~ Suppress unused code

I~ Optimize arithmetic operations

I~ Optimize boolean operations

I™ Build binary decision diagrams (BDDs)

Select

Unselect

ad.

Default

Cancel

· Close the code window.

· Back in the library go to File |Verify (compile).

· Your function is now ready to be used in any application built on your computer. Finding your function is relatively easy. For example, if a function block is written and stored in the library I would find it in the “Select function block” window shown below.
[image: image29.png]15aGRAF - NODE1:MAIN - FBD/LD Program o5 (0l x|
Fie it Took Optins rielp
D@ XoR He | <Bdlaai &l
whE=dYg 2330k ooolean AND. = |
et
[T s
C MiyKey st O)
Select function block
Fofest Block: [FeTest - [i3
o] Inputs: [test Funcion Block Test
i i sring
o L0 fiton Provks a fiitop unction g
FMLREAD read message from fie
FMOARITE it message o fie
Frest
[tocose_ciose 1P et connection -

Summary

The above information is meant as a primer to introduce you to the basics of creating functions and function blocks that can be reused both in a single application and multiple future applications. Implementing functions will allow you to reuse more code and cut down on future production times, saving both you and your customers time and money.

Contact Information

Toll Free

(800) 888-1893

Local

(530) 888-1800

Fax

(530) 888-7017

Email

support@iclinks.com
Web

http://www.iclinks.com
Mail

12840 Earhart Avenue (Auburn, CA USA 95602

_1221459434.doc
[image: image1.png]|—Program Code
Repeated Code Block

—r Program Code

Function Call

— — Function Code

Without Functions With Functions

