Modulus Mesh Communications modules have built-in 1/4W 900MHz Meshing Radios compatible with Scadaflex II controllers, and Scadaflex II battery powered and distributed Remote I/O modules. Meshing radios automatically form self-healing repeater links to get messages through the network, even when an intermediate node becomes unavailable. They also support wired communications with Modbus, DF1, Ethernet IP, SDX, MQTT, and SDI-12.

The Mesh Communications modules have built-in analog and digital I/O for tank level and process monitoring, and pump control applications such as wells, lift stations and booster pumping stations. The modules have an analog input supporting both mA and voltage measurement. In addition, they have six discrete inputs (two high-speed and four optically isolated), three discrete outputs, and two analog outputs.

Modulus Mesh Communications modules have two serial ports (bus port plus one general purpose port). The bus port may also be used for general purpose RS-485 communications when not bussed with other Modulus I/O modules.

STANDALONE OPERATION
Modulus Mesh Communications modules can serve as standalone devices with SCADA communications, local and web human machine interfaces (HMIs), historical trending and data logging, alarming, reporting, and programmable logic.

COMMUNICATIONS
Modulus Mesh Communications modules have a built-in 1/4W 900MHz license-free spread spectrum radios that can form a self-healing high-reliability wireless network between controllers and remote I/O. They also have an Ethernet port and two serial ports to communicate with Modbus devices and Allen Bradley PLCs. They can serve as communications concentrators or master controllers, as well as providing web and data access to any other Modulus modules on the high-speed bus. They support Ethernet to Serial bridging, and routing through Ethernet ports in other Modulus modules on the bus.

GRAPHICAL, MOBILE, AND LOCAL HMIs
Configurable graphical and mobile device web interfaces, including the tools and libraries to build custom screens, are built in. The front panel display can also be customized to show live process values and states, and make setting changes.

HISTORICAL TRENDING AND EVENT LOGGING
Modulus Mesh Communications modules have an internal flash disk, as well as a micro SD memory card slot to record over 100 years of data! Use built-in web tools to retrieve and display historical trend and event data and extract it as spreadsheet files.

REPORTING
Reports with custom graphics and logos can be created in minutes, showing live values, totals, trend/event data, alarm summaries, etc. They can be called up on demand, or sent out automatically.

ALARMS
A Modulus Mesh Communications module can manage alarm conditions on any of its local inputs and other Modulus I/O on the bus, as well as external devices via communications. Alarms conditions can be displayed locally and annunciated by text message and e-mail alerts. Alarms can be acknowledged by text message or e-mail, discrete input, or local HMI button. The module maintains a journal spreadsheet file of when alarms occurred, when they were acknowledged, by whom, and when the alarm conditions clear.

PROGRAMMABLE LOGIC
Modulus Mesh Communications modules support programmable logic written in ladder logic, function block and text languages; all with 32-bit integer and floating point math. Programmable logic can supplement the built-in functions of the module.

PID & PUMP CONTROL
Modulus Mesh Communications modules have a quad PID controller and a triplex pump controller (float or level control) with error detection and alarming. The Mesh Communications Module is an ideal solution for SCADA operation of wells, lift stations, and booster pump stations.

REdundancy
Modulus Mesh Communications modules support redundancy for enhanced reliability. If a module goes off-line, a designated backup can take over automatically.
Field I/O

Discrete Inputs:
- **Input Range:** Contact closure/open collector driver to ground, or 0 to 30Vdc (ON=1.5V, OFF > 2.5V)
- **Input Current:** Approximately 0.5mA (internal current source)
- **Filtering:** Individually configurable: 5Hz, 10Hz, 20Hz, 50Hz, 100Hz, 1KHz, 2KHz, 5KHz, 10KHz+
- **Input Range:** 0 to 30V (OFF < 6V, ON>9V)
- **Input Current:** 1.2mA @ 12V, 3mA @ 24V
- **Filtering:** Individually configurable: 20Hz or 100Hz

Discrete Outputs:
- **Output Rating:** 30Vdc, 2A maximum, current limited to approximately 2.25A.

Analog Inputs:
- **Input Range:** 20mA (minimum input for full accuracy is 0.5mA)
- **Input Current:** 5V, +/-5V, 10V, +/-10V, 30V

Analog Outputs:
- **Output Ranges:** -20mA to 20mA, 4-20mA

Communications

Ethernet:
- **10/100mbs (10/100 Base-T)**
- Modbus TCP & UDP (master/slave), Ethernet IP (master/slave PLCs & SLC5/05 emulation), SDX (AES-128 Encryption), MQTT, Ethernet to Serial bridging HTTP (server), FTP (server & client), E-mail (SMTP and POP3), ICMP (ping; server & client), HTTP (server & client), DNS, DDNS

Wireless:
- **900MHz 1/4W (24dBm) Frequency Hopping Spread Spectrum meshing radio, -101 dBm sensitivity @ 200kbps, up to 64 remote nodes**

Serial:
- **RS-232, RS-485, RS-422, SDI-12**
- Baud Rates (all ports) 115K, 38.4K, 19.2K, 9600, 4800, 2400, 1200 baud.
- Protocols Modbus RTU (master/slave), DF1 (slave), SDX (AES-128 Encryption), SDI-12 (general purpose port only)

HMIs
- **Local:** 128x32 graphical, wide temperature range yellow OLED and single pushbutton
- **Graphical:** Web based, graphic library included. Compatible with most browsers, including Internet Explorer, Firefox, Chrome, Safari, Android
- **Mobile:** Web based, text only, up to 50 registers. Compatible with most browsers, including Internet Explorer, Firefox, Chrome, Safari, Android

Programming

Languages: Ladder Logic, Function Block, Text—built-in web based graphical and text editor and debugger

Capacity: 64KB logic, 2MB source code, 32-bit integer and floating point math

Storage

Registers: 504 Numeric registers, 504 Boolean registers

Internal Flash disk: 32MB

Removable disk: Micro SD Card (up to 256GB, supplied by customer)

Clock

Real Time Clock: Temperature compensated with lithium battery backup power

Stability: +/- 3ppm from -30°C to 70°C

General

Input Power: 10Vdc to 30Vdc

Power Consumption
- Not using Ethernet: 68mA @ 12Vdc / 40mA @ 24Vdc (Ethernet power saver enabled)
- Using Ethernet: 108mA @ 12Vdc / 60mA @ 24Vdc
- Radio Transmitting: Add 100mA @ 12Vdc 50mA @ 24Vdc in short transmit bursts

Field Wiring Termination: [81-5x61] screw terminal blocks [82-5x61] lever terminal blocks, 3.5mm, 22 to 14GA wires

Antenna Connector: SMA female (female pin center conductor)

Temperature: -40°C to 70°C (operating), -40°C to 85°C (storage)

Humidity: <95% RH (non-condensing)

Enclosure: Polyamide, light gray (RAL 7035)

Mounting: 35mm DIN rail with bus connector block
Mesh Spread Spectrum radio systems use antennas mounted external to the controller. The type of antenna used depends on both the distance to be covered and the terrain between any two sites that are to be linked together. The selection of antennas, mounting height above grade, cable types, etc. should be determined by use of a radio path study to ensure reliable communications. There are three types of antennas typically used:

- “Salt Shaker” style Omni-directional for moderate distances
- 6dB Omni-directional for best performance at a Master or repeater site
- 6dB Yagi directional for best noise rejection and signal focus at remote sites

“Salt Shaker” Style Omnidirectional for Medium Distance Communications

A “Salt Shaker” style antenna is the lowest cost, and easiest type to deploy in the field. It can be mounted on the top of the equipment panel and works well for moderate communications distance. Since it is omni-directional, there is no aiming or alignment required in the field. The antenna part number is 98-3103, and connects to the communications module with a short internal antenna cable (part number 98-6536).

Antenna Components for Maximum Communications Distances

Using elevated higher gain antennas can significantly improve the performance and reliable operating distance of a radio system. Since elevating the antennas will also increase the installation and maintenance cost of the system, you should always have a radio path study done to select the antenna components and mounting arrangements. Omni-directional antennas do not need to be aimed while Yagi directional antennas will provide better off-axis noise rejection. For either type of antenna system, a lightning arrestor is generally recommended since by being elevated, the antennas become a better “target” for a lightning strike. Use a dedicated grounding rod and bonding as shown for the lightning arrestor.

Antenna System BOM:

- 98-6536 36” Internal Antenna Cable
- 98-8011 Lightning Arrester
- 98-42xx Low-loss Antenna Cable (xx= length in feet)
- 98-2106 Spread Spectrum Yagi Directional Antenna
- 98-3106 Spread Spectrum 6dB Omni-directional Antenna
- 98-9002 Weatherproofing Kit (for external antenna connections)
Refer to the installation manual for additional installation details and precautions.

Discrete Inputs DI1 & DI2, Discrete Output DO1 & Analog Input AI1 - TB1
The field wiring may be connected directly to the TB1 terminal block, or through a field wiring panel as shown in the diagrams below. All discrete inputs/outputs and the analog input are referenced to the ground terminal (5). This terminal is connected internally to the power supply ground.

The Discrete Inputs accept contact closures or open-collector ("NPN" style) input signals. External pull-up resistors are not required.

The Discrete Output sources current by switching the module input power to the output terminal.

The Analog Input accepts 20mA current or voltage (+/-5v, +/-10v and 30v) signals. The mode is software selectable. Sensors can be either loop powered (Figure A) or self-powered (Figure C). In power conserving applications, the analog sensor may be powered from the Discrete Output (Figure B), configured to switch power to the sensor only when needed to take an analog reading (with configurable "warmup" time (a 20mA loop powered sensor is shown below, but a voltage sensor can also be used by switching its power).

Note that for all configurations, the model 82-00xx Field Wiring Panel is used.

Discrete Outputs DO2 and DO3, Analog Outputs—TB2
Mini I/O Comm modules add two FET discrete outputs and two 20mA analog outputs to the base module. The field wiring to these outputs may be connected directly to the TB2 terminal block, or through an 82-02xx Field Wiring Panel as shown in the diagrams below. The cable for the field wiring panel is terminated with a 4-position terminal block plug that plugs into the module, and a separate ground wire that is connected back to the power ground (usually at the base terminal block on the DIN rail).

The Discrete Outputs source current ("PNP" style) by switching the modules input power to the output terminals.

The Analog Outputs source current to their loads from the modules input power.

Discrete Inputs DI3 to DI6 —TB3
Mini I/O Comm modules have four optically isolated discrete inputs. The field wiring to these inputs may be connected directly to the TB3 terminal block, or through a Field Wiring Panel as shown in the diagrams below. The common for the discrete inputs is shared among the four inputs but isolated from the rest of the module.

Sensor power may be AC or DC of either polarity. It can be the same source as the module input power.