Modulus Mesh Communications modules have built-in 1/4W 900MHz Meshing Radios compatible with Scadaflex II controllers, and Scadaflex II battery powered and distributed Remote I/O modules. Meshing radios automatically form self-healing repeater links to get messages through the network, even when an intermediate node becomes unavailable. They also support wired communications with Modbus, DF1, Ethernet IP, SDX, MQTT, and SDI-12.

The Mesh Communications modules have built-in analog and digital I/O for tank level and process monitoring, and pump control applications such as wells, lift stations and booster pumping stations. The modules have an analog input supporting both mA and voltage. In addition, they have six discrete inputs (two high-speed and four optically isolated), and a discrete output.

Modulus Mesh Communications modules have two serial ports (bus port plus one general purpose port). The bus port may also be used for general purpose RS-485 communications when not bussed with other Modulus I/O modules. These modules have 2 high-quality audio outputs that under program control, can play up to 1000 different MP3 audio segments through a public address or audio radio system. They can also vocalize the values of real-time data in any storage register in multiple common languages.

STANDALONE OPERATION
Modulus Mesh Communications modules can serve as standalone devices with SCADA communications, local and web human machine interfaces (HMIs), historical trending and data logging, alarming, reporting, and programmable logic.

COMMUNICATIONS
Modulus Mesh Communications modules have a built-in 1/4W 900MHz license-free spread spectrum radios that can form a self-healing high-reliability wireless network between controllers and remote I/O. They also have an Ethernet port and two serial ports to communicate with Modbus devices and Allen Bradley PLCs. They can serve as communications concentrators or master controllers, as well as providing web and data access to any other Modulus modules on the high-speed bus. They support Ethernet to Serial bridging, and routing through Ethernet ports in other Modulus modules on the bus.

GRAPHICAL, MOBILE, AND LOCAL HMIs
Configurable graphical and mobile device web interfaces, including the tools and libraries to build custom screens, are built in. The front panel display can also be customized to show live process values and states, and make setting changes.

HISTORICAL TRENDING AND EVENT LOGGING
Modulus Mesh Communications modules have an internal flash disk, as well as a micro SD memory card slot to record over 100 years of data! Use built-in web tools to retrieve and display historical trend and event data and extract it as spreadsheet files.

REPORTING
Reports with custom graphics and logos can be created in minutes, showing live values, totals, trend/event data, alarm summaries, etc. They can be called up on demand, or sent out automatically.

ALARMING
A Modulus Mesh Communications module can manage alarm conditions on any of its local inputs and other Modulus I/O on the bus, as well as external devices via communications. Alarms conditions can be displayed locally, and annunciacted by text message, e-mail, and audible (public address) alerts. Alarms can be acknowledged by text message or e-mail, discrete input, or local HMI button. The module maintains a journal spreadsheet file of when alarms occurred, when they were acknowledged, by whom, and when the alarm conditions clear.

PROGRAMMABLE LOGIC
Modulus Mesh Communications modules support programmable logic written in ladder logic, function block and text languages; all with 32-bit integer and floating point math. Programmable logic can supplement the built-in functions of the module.

PID & PUMP CONTROL
Modulus Mesh Communications modules have a quad PID controller and a triplex pump controller (float or level control) with error detection and alarming. The Mesh Communications Module is an ideal solution for SCADA operation of wells, lift stations, and booster pump stations.

REDUNDANCY
Modulus Mesh Communications modules support redundancy for enhanced reliability. If a module goes off-line, a designated backup can take over automatically.
Modulus Mesh Radio Communications Module with Audio Out - Type 2110 - Specifications

FIELD I/O
Discrete Inputs: 2
 Input Range: Contact closure/open collector driver to ground, or 0 to 30Vdc (ON=<1.5V, OFF > 2.5V)
 Input Current: Approximately 0.5mA (internal current source)
 Filtering: Individually configurable: 5Hz, 10Hz, 20Hz, 50Hz, 100Hz, 500Hz, 1KHz, 2KHz, 5KHz, 10KHz+
 Input Range: 0 to 30V (OFF < 6V, ON>9V)
 Input Current: 1.2mA @ 12V, 3mA @ 24V
 Filtering: Individually configurable: 20Hz or 100Hz

Discrete Outputs: 1
 Output Rating: 30Vdc, 2A maximum, current limited to approximately 2.25A.

Analog Inputs: 1
 Input Range: • 20mA (minimum input for full accuracy is 0.5mA)
 • 5V, +/-5V, 10V, +/-10V, 30V

COMMUNICATIONS
Ethernet: 1
 10/100mb/s (10/100 Base-T)
 SCADA Protocols: Modbus TCP & UDP (master/slave), Ethernet IP (master/slave PLC5 & SLC5/05 emulation), SDX (AES-128 Encryption), MQTT, Ethernet to Serial bridging (HTTP, FTP, E-mail, SMTP and POP3, ICMP (ping, server & client), NTP (client), DHCP (server & client), DNS, DDNS
 Internet Protocols: HTTP (server), FTP (server & client), E-mail (SMTP and POP3), ICMP (ping, server & client), NTP (client), DHCP (server & client), DNS, DDNS

Wireless: 1
 900MHz 1/4W (24dBm) Frequency Hopping Spread Spectrum meshing radio, -101 dBm sensitivity @ 200kbps, up to 64 remote nodes

Serial: 1
 RS-232, RS-485, RS-422, SDI-12 (for general purpose communications)
 Protocols: Modbus RTU (master/slave), DF1 (slave), SDX (AES-128 Encryption), SDI-12 (general purpose port only)

Audio: 2
 18-bit audio output, <0.2% Total Harmonic Distortion
 File Storage: Dedicated 32MB internal flash disk; up to 1000 audio file segments
 File Format: MP3 compressed audio with automatic sample rate detection and playback; 320 kbit/s maximum
 Output Levels and Load: 1.6Vpp into 30 ohms with electronic programmable attenuation and tone controls

HMIs
Local: 128x32 graphical, wide temperature range yellow OLED and single pushbutton
Graphical: Web based, graphic library included. Compatible with most browsers, including Internet Explorer, Firefox, Chrome, Safari, Android
Mobile: Web based, text only, up to 50 registers. Compatible with most browsers, including Internet Explorer, Firefox, Chrome, Safari, Android

PROGRAMMING
Languages: Ladder Logic, Function Block, Text—built-in web based graphical and text editor and debugger
Capacity: 64KB logic, 2MB source code, 32-bit integer and floating point math

STORAGE
Registers: 504 Numeric registers, 504 Boolean registers
Internal Flash disk: 32MB
Removable disk: Micro SD Card (up to 256GB, supplied by customer)

CLOCK
Real Time Clock: Temperature compensated with lithium battery backup power
Stability: +/- 3ppm from –30°C to 70°C

GENERAL
Input Power: 10Vdc to 30Vdc
Power Consumption:
 Not using Ethernet: 68mA @ 12Vdc / 40mA @ 24Vdc (Ethernet power saver enabled)
 Using Ethernet: 108mA @ 12Vdc / 60mA @ 24Vdc
 Radio Transmitting: Add 100mA @ 12Vdc 50mA @ 24Vdc in short transmit bursts

Field Wiring Termination: [81-5x21] screw terminal blocks [82-5x21] lever terminal blocks, 3.5mm, 22 to 14GA wires
Antenna Connector: SMA female (female pin center conductor)
Temperature: -40°C to 70°C (operating), -40°C to 85°C (storage)
Humidity: <95% RH (non-condensing)
Enclosure: Polyamide, light gray (RAL 7035)
Mounting: 35mm DIN rail with bus connector block

Specifications subject to change without notice. Consult factory to ensure that you are working with current information.
Mesh Spread Spectrum radio systems use antennas mounted external to the controller. The type of antenna used depends on both the distance to be covered and the terrain between any two sites that are to be linked together. The selection of antennas, mounting height above grade, cable types, etc. should be determined by use of a radio path study to ensure reliable communications. There are three types of antennas typically used:

- **“Salt Shaker” style Omni-directional for moderate distance**
- **6dB Omni-directional for best performance at a Master or repeater site**
- **6dB Yagi directional for best noise rejection and signal focus at remote sites**

“Salt Shaker” Style Omnidirectional for Medium Distance Communications

A “Salt Shaker” style antenna is the lowest cost, and easiest type to deploy in the field. It can be mounted on the top of the equipment panel and works well for moderate communications distance. Since it is omni-directional, there is no aiming or alignment required in the field. The antenna part number is 98-3103, and connects to the communications module with a short internal antenna cable (part number 98-6536).

Antenna Components for Maximum Communications Distances

Using elevated higher gain antennas can significantly improve the performance and reliable operating distance of a radio system. Since elevating the antennas will also increase the installation and maintenance cost of the system, you should always have a radio path study done to select the antenna components and mounting arrangements. Omni-directional antennas do not need to be aimed while Yagi directional antennas will provide better off-axis noise rejection. For either type of antenna system, a lightning arrestor is generally recommended since by being elevated, the antennas become a better “target” for a lightning strike. Use a dedicated grounding rod and bonding as shown for the lightning arrestor.

Antenna System Options

- “Salt Shaker” style Omni-directional for moderate distances
- 6dB Omni-directional for best performance at a Master or repeater site
- 6dB Yagi directional for best noise rejection and signal focus at remote sites

Antenna System BOM:

- 98-6536 36” Internal Antenna Cable
- 98-8011 Lightning Arrestor
- 98-42xx Low-loss Antenna Cable (xx= length in feet)
- 98-2106 Spread Spectrum Yagi Directional Antenna
- 98-3106 Spread Spectrum 6dB Omni-directional Antenna
- 98-9002 Weatherproofing Kit (for external antenna connections)
Refer to the installation manual for additional installation details and precautions.

Discrete Inputs DI1 & DI2, Discrete Output DO1 & Analog Input AI1 - TB1

The field wiring may be connected directly to the TB1 terminal block, or through a field Wiring Panel as shown in the diagrams below. All discrete inputs/outputs and the analog input are referenced to the ground terminal (5). This terminal is connected internally to the power supply ground.

The Discrete Inputs accept contact closures or open-collector ("NPN" style) input signals. External pull-up resistors are not required.

The Discrete Output sources current by switching the module input power to the output terminal.

The analog input accepts 20mA current or voltage (+/-5v, +/-10v and 30v) signals. The mode is software selectable. Sensors can be either loop powered (Figure A) or self-powered (Figure C). In power conserving applications, the analog sensor may be powered from the Discrete Output (Figure B), configured to switch power to the sensor only when needed to take an analog reading (with configurable "warmup" time (a 20mA loop powered sensor is shown below, but a voltage sensor can also be used by switching its power).

Note that for all configurations, the model 82-00xx Field Wiring Panel is used.

Audio and Push-to-Talk Outputs—TB2

Audio Out Comm modules add two high-quality audio output channels and a transistor "open collector" Push-to-Talk discrete output to the base module. These can be used to announce audio messages over a public address or audio radio system. The field wiring to these outputs may be connected directly to the TB2 terminal block, or through an 82-02xx Field Wiring Panel as shown in the diagrams below.

The Audio Outputs have both left and right channels, along with a "Push-to-Talk" open collector output that will switch to ground when audio is playing. This can be used to activate the output of a public address amplifier, or key an audio radio transmission when audio is being played.

Discrete Inputs DI3 to DI6 —TB3

Audio Out Comm modules have four optically isolated discrete inputs. The field wiring to these inputs may be connected directly to the TB3 terminal block, or through a Field Wiring Panel as shown in the diagrams below. The common for the discrete inputs is shared among the four inputs but isolated from the rest of the module.

Sensor power may be AC or DC of either polarity. It can be the same source as the module input power.