Modulus Cellular Communications modules have a built-in 4G LTE cellular modem for data exchange over the Internet, alarming/notifications by e-mail and text message, and remote access. They also support wired communications with Modbus, DF1, Ethernet IP, SDX, MQTT, and SDI-12.

The Cellular Communications modules have built-in analog and digital I/O for tank level and process monitoring, and pump control applications such as wells, lift stations and booster pumping stations. The modules may be ordered with analog inputs supporting either mA, voltage or resistance/temperature measurement. In addition, they have five discrete inputs (one high-speed and four optically isolated), three discrete outputs, and two analog outputs.

Modulus Cellular Communications modules have a single serial port (bus port). The bus port may be used for general purpose RS-485 communications when not bussed with other Modulus I/O modules.

**Modulus Cellular Communications Module 1120 with Mini I/O**

**Standalone Operation**

Modulus Cellular Communications modules can serve as standalone devices with SCADA communications, local and web human machine interfaces (HMI), historical trending and data logging, alarming, reporting, and programmable logic.

**Communications**

Modulus Cellular Communications modules have a built-in 4G LTE cellular modem that can be ordered to support either Verizon or AT&T / international cellular networks. The also have an Ethernet port and one or two serial ports to communicate with Modbus devices and Allen Bradley PLCs. They can serve as communications concentrators or master controllers, as well as providing web and data access to any other Modulus modules on the high-speed bus. They support Ethernet to Serial bridging, and routing through Ethernet ports in other Modulus modules on the bus.

**Graphical, Mobile, and Local HMI**

Configurable graphical and mobile device web interfaces, including the tools and libraries to build custom screens, are built in. The front panel display can also be customized to show live process values and states, and make setting changes.

**Historical Trending and Event Logging**

Modulus Cellular Communications modules have an internal flash disk, as well as a micro SD memory card slot to record over 100 years of data! Use built-in web tools to retrieve and display historical trend and event data and extract it as spreadsheet files.

**Reporting**

Reports with custom graphics and logos can be created in minutes, showing live values, totals, trend/event data, alarm summaries, etc. They can be called up on demand, or sent out automatically.

**Alarming**

A Modulus Cellular Communications module can manage alarm conditions on any of it's local inputs and other Modulus I/O on the bus, as well as external devices via communications. Alarms conditions can be displayed locally and annunciated by text message and e-mail alerts. Alarms can be acknowledged by text message or e-mail, discrete input, or local HMI button. The module maintains a journal spreadsheet file of when alarms occurred, when they were acknowledged, by whom, and when the alarm conditions clear.

**Programmable Logic**

Modulus Cellular Communications modules support programmable logic written in ladder logic, function block and text languages; all with 32-bit integer and floating point math. Programmable logic can supplement the built-in functions of the module.

**PID & Pump Control**

Modulus Cellular Communications modules have a quad PID controller and a triplex pump controller (float or level control) with error detection and alarming. The Cellular Communications Module is an ideal solution for SCADA operation of wells, lift stations, and booster pump stations.

**Redundancy**

Modulus Cellular Communications modules support redundancy for enhanced reliability. If a module goes off-line, a designated backup can take over automatically.
Modulus Cellular Communications Module with Mini I/O - Type 1120 - Specifications

FIELD I/O

Discrete Inputs: 1
- Contact closure/open collector driver to ground, or 0 to 30Vdc (ON=<1.5V, OFF > 2.5V)
- Input Range: Individually configurable: 5Hz, 10Hz, 20Hz, 50Hz, 100Hz, 500Hz, 1kHz, 2kHz, 5kHz, 10kHz+
- Input Current: 0 to 30V (OFF < 6V, ON>9V)
- Input Current: 1.2mA @ 12V, 3mA @ 24V
- Filtering: Individually configurable: 20Hz or 100Hz

Optically Isolated, bipolar (AC/DC, not polarity sensitive)
- Input Range: 0 to 30V (OFF < 6V, ON>9V)
- Input Current: 1.2mA @ 12V, 3mA @ 24V
- Filtering: Individually configurable: 20Hz or 100Hz

Discrete Outputs: 3
- Solid-state Protected FET high-side drivers (switch to input power when ON)
- Output Rating: 30Vdc, 2A maximum, current limited to approximately 2.25A.

Analog Inputs: 2
- 16-bit, Delta Sigma, individually software configurable ranges
- Input Range:
  - [8X-517X] 20mA (minimum input for full accuracy is 0.5mA)
  - [8X-527X] 5V, +/-5V, 10V, +/-10V, 30V
  - [8X-537X] 50K ohms, temperature using 2.2K, 10K (type II, III and w/11.K shunt) thermistors

Analog Outputs: 2
- 12-bit
- Output Ranges:
  - 0-20mA, 4-20mA

COMMUNICATIONS

Ethernet: 1
- 10/100mb/s (10/100 Base-T)
- Modbus TCP & UDP (master/slave), Ethernet IP (master/slave PLCs & SLC5/05 emulation), SDX (AES-128 Encryption), MQTT, Ethernet to Serial bridging
- HTTP (server), FTP (server & client), E-mail (SMTP and POP3), ICMP (ping; server & client), NTP (client), DHCP (server & client), DNS, DDNS

SCADA Protocols
- Modbus TCP & UDP (master/slave), MQTT

Internet Protocols
- HTTP (server), FTP (server & client), E-mail (SMTP and POP3), ICMP (ping; server and client), DNS, DDNS

Cellular: 1
- 4G LTE: [8x-5x71] 700(B13)/AWS1700(B4)/1900(B2) (Verizon)
- 4G LTE: [8x-5x72] 700(B12/B13)/850(B5)/AWS1700(B4)/1900(B2) (AT&T, T-Mobile, International)
- Modbus TCP & UDP (master/slave), MQTT

SCADA Protocols
- HTTP (server), FTP (server & client), E-mail (SMTP and POP3), ICMP (ping; server and client), DNS, DDNS

Serial: 1
- RS-485 Bus port (this port is available for general purpose communications if not used for high-speed bus communications with other modules)
- Protocols:
  - Modbus RTU (master/slave), DF1 (slave), SDI-12 (general purpose port only)

HMIs
- Local:
  - 128x32 graphical, wide temperature range yellow OLED and single pushbutton

- Graphical:
  - Web based, graphic library included. Compatible with most browsers, including Internet Explorer, Firefox, Chrome, Safari, Android

- Mobile:
  - Web based, text only, up to 50 registers. Compatible with most browsers, including Internet Explorer, Firefox, Chrome, Safari, Android

PROGRAMMING

Languages:
- Ladder Logic, Function Block, Text—built-in web based graphical and text editor and debugger

Capacity:
- 64KB logic, 2MB source code, 32-bit integer and floating point math

STORAGE

Registers:
- 504 Numeric registers, 504 Boolean registers

Internal Flash disk:
- 32MB

Removable disk:
- Micro SD Card (up to 256GB, supplied by customer)

CLOCK

Real Time Clock:
- Temperature compensated with lithium battery backup power
- Stability: +/- 3ppm from –30°C to 70°C

GENERAL

Input Power:
- 10Vdc to 30Vdc

Power Consumption
- Not using Ethernet: 68mA @ 12Vdc / 40mA @ 24Vdc (Ethernet power saver enabled)
- Using Ethernet: 108mA @ 12Vdc / 60mA @ 24Vdc

Field Wiring Termination:
- [81-5x7x] screw terminal blocks [B2-5x7x] lever terminal blocks, 3.5mm, 22 to 14GA wires

Antenna Connector:
- SMA female (female pin center conductor)

Temperature:
- -40°C to 70°C (operating), -40°C to 85°C (storage)

Humidity:
- <95% RH (non-condensing)

Enclosure:
- Polyamide, light gray (RAL 7035)

Mounting:
- 35mm DIN rail with bus connector block

Specifications subject to change without notice. Consult factory to ensure that you are working with current information.
**DIMENSIONS and CONNECTIONS**

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-485</td>
</tr>
<tr>
<td>2</td>
<td>+485</td>
</tr>
<tr>
<td>3</td>
<td>RESET#</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>+V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminals</th>
<th>TB1</th>
<th>TB2</th>
<th>TB3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D11</td>
<td>D02</td>
<td>D12</td>
</tr>
<tr>
<td>2</td>
<td>A11</td>
<td>D03</td>
<td>D03</td>
</tr>
<tr>
<td>3</td>
<td>A02</td>
<td>A01</td>
<td>D4</td>
</tr>
<tr>
<td>4</td>
<td>D01</td>
<td>A02</td>
<td>D5</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>DIC</td>
<td></td>
</tr>
</tbody>
</table>

**Antenna System Options**

Most cellular based systems typically have less costly and complex antenna system requirements. The choice of antenna components depends on the type of enclosure housing the enclosure (metallic or non-metallic) and the proximity to the nearest cellular tower.

**Non-metallic Enclosure**

When installed in a non-metallic enclosure, the simplest and lowest cost antenna solution is a whip antenna screwed directly into the SMA antenna connector on the module. The part number is 98-3411.

**Metallic enclosure—standard**

If the module is installed in a metallic enclosure, many applications can use a low-cost “salt-shaker” style antenna (part number 98-3402), mounted on the enclosure. The antenna is connected to the communications module with a short internal antenna cable (part number 98-6136).

**Metallic enclosure—difficult reception areas**

Sometimes, the site location may not be close to the carriers cellular tower. This may require a higher performance antenna system using a Yagi directional antenna elevated on a support pole or structure. You will need to aim the antenna towards the desired cellular tower (the carrier can help you identify the tower location). A lightning arrestor is generally recommended since the antenna is elevated, making it a better “target” for a lightning strike. Use a dedicated grounding rod and bonding as shown for the lightning arrestor.

**Antenna System BOM:**

- 98-6136 36" Internal Antenna Cable
- 98-8011 Lightning Arrestor
- 98-42xx Low-loss Antenna Cable (xx= length in feet)
- 98-3409 Cellular Yagi Antenna w/ weather radome
- 98-9002 Weatherproofing Kit (for external antennal connections)
Refer to the installation manual for additional installation details and precautions.

**Discrete Input DI1, Discrete Output DO1 & Analog Inputs — TB1**

The field wiring may be connected directly to the TB1 terminal block, or through a field Wiring Panel as shown in the diagrams below. All discrete inputs/outputs and analog inputs are referenced to the ground terminal (5). This terminal is connected internally to the power supply ground.

The Discrete Input accepts a contact closure or open-collector ("NPN" style) input signal. An external pull-up resistor is not required.

The Discrete Output sources current by switching the module input power to the output terminal.

The 8x-517x models have analog inputs that accept 20mA current signals. Loop powered (Figure A) and self-powered (Figure C) devices are supported. In power conserving applications, the analog sensors may be powered from the Discrete Output (Figure B), configured to switch power to the sensors only when needed to take an analog reading (with configurable "warmup" time).

The 8x-527x models have analog inputs that support voltage sensors (+/-5v, +/-10v and 30v) while the 8x-537x models support resistance sensors including thermistor type temperature sensors. The wiring for these sensors is shown in Figure D below.

Note that for loop powered devices, model 82-01xx Field Wiring Panels should be used. For self-powered devices, either model 82-00xx or 82-01xx Field Wiring Panels may be used.

**Discrete Outputs DO2 and DO3, Analog Outputs—TB2**

Mini I/O Comm modules add two FET discrete outputs and two 20mA analog outputs to the base module. The field wiring to these outputs may be connected directly to the TB2 terminal block, or through an 82-02xx Field Wiring Panel as shown in the diagrams below. The cable for the field wiring panel is terminated with a 4-position terminal block plug that plugs into the module, and a separate ground wire that is connected back to the power ground (usually at the base terminal block on the DIN rail).

The Discrete Outputs source current ("PNP" style) by switching the modules input power to the output terminals.

The Analog Outputs source current to their loads from the module input power.

**Discrete Inputs DI2 to DI5 — TB3**

Mini I/O Comm modules have four optically isolated discrete inputs. The field wiring to these inputs may be connected directly to the TB3 terminal block, or through a Field Wiring Panel as shown in the diagrams below. The common for the discrete inputs is shared among the four inputs but isolated from the rest of the module.

Sensor power may be AC or DC of either polarity. It can be the same source as the module input power.